Titration

Titration is the addition of a standard solution (the **titrant**) to a measured volume of a solution with unknown concentration (the **analyte**) to react according to a known stoichiometry.

n [Titrant] + m [Analyte] \rightarrow products

Titration Basic Concepts and Definitions

n [Titrant] + m [Analyte] \rightarrow products

✓ At any point in the titration, if volume is in mL,

millimol titrant added = $M_t \times V_t$

- ✓ **Equivalence point** Volume of titrant necessary to achieve complete conversion of analyte into products.
 - At the equivalence point, millimoles of analyte initially present is related to millimoles of titrant added by

$$\mathbf{M}_{\mathbf{a}} \times V_{\mathbf{a}} = (m/n) \times \mathbf{M}_{\mathbf{t}} \times V_{\mathbf{t}}$$

✓ End point - Volume of titrant added when an indicator changes color, ideally signaling the equivalence point.

Types of Acid-Base Titrations

Analyte	Titrant
Weak or strong base	Strong acid (e.g., HCl)
Weak or strong acid	Strong base (e.g., NaOH)

Examples:

strong acid - strong base (acid or base analyte; base or acid titrant)

$$HCl(aq) + NaOH(aq) \rightarrow NaCl(aq) + H_2O(l)$$

Weak acid (analyte) - strong base (titrant)

$$HOAc(aq) + NaOH(aq) \rightarrow NaOAc(aq) + H_2O(l)$$

Weak base (analyte) - strong acid (titrant)

$$NH_3(aq) + HCl(aq) \rightarrow NH_4Cl(aq)$$

Weak triprotic acid (analyte) - strong base (titrant)

$$H_3PO_4(aq) + 3NaOH(aq) \rightarrow Na_3PO_4(aq) + 3H_3O(l)$$

Acid-Base Titrations Net Ionic Equations by Type

Strong Acid-Strong Base $H_3O^+ + OH^- \rightarrow 2H_2O$

Weak Acid-Strong Base HA + OH⁻ → A⁻ + H₂O

Weak Base-Strong Acid $B + H_3O^+ \rightarrow BH^+ + H_2O$

Acid-Base Titration Relationships at Equivalence Point (Monoprotic Cases)

initial millimoles analyte = millimoles titrant added

Strong Acid-Strong Base

initial millimoles H_3O^+ = millimoles OH^- added or initial millimoles OH^- = millimoles H_3O^+ added

Weak Acid-Strong Base

initial millimoles HA = millimoles OH⁻ added

Weak Base-Strong Acid

initial millimoles $B = millimoles H_3O^+$ added

Regions in a Weak Acid Titration

- 1. **Initial Point** (no added titrant):
 - ✓ Pure HA in water
 - Use K_a and C_{HA} to find $[H_3O^+]$ and pH.
- 2. **Before Equivalence Point** (buffer region):
 - ✓ Significant [HA] and [A⁻]
 - Use K_a or Henderson-Hasselbalch equation to find $[H_3O^+]$ and pH, just like a buffer.
- 3. Equivalence Point:
 - ✓ All HA converted to A⁻
 - Calculate K_b for A^- as K_w/K_a^{HA} .
 - Find [OH⁻] and pOH as for a solution of pure A⁻ in water, then pH.
- 4. Beyond Equivalence Point:
 - ✓ Excess OH⁻
 - Calculate [OH⁻] and pOH, then pH, as in the strong acid-base case.

pH at the Equivalence Point

✓ Strong acid – strong base titration:

$$2H_2O \rightleftharpoons H_3O^+ + OH^-$$

$$pH = 7$$

✓ Weak acid – strong base titration:

$$A^- + H_2O \Rightarrow HA + OH^ pH > 7$$

✓ Weak base – strong acid titration:

$$BH^{+} + H_{2}O \rightleftharpoons B + H_{3}O^{+}$$

$$PH < 7$$

Summary of Calculations for Weak Acid Titrations Before Equivalence Point

Region	Calculation of [H ₃ O ⁺]
Initial (no added titrant)	$K_{a} = \frac{[H_{3}O^{+}]^{2}}{[HA]}$ $= \frac{[H_{3}O^{+}]^{2}}{C_{HA} - [H_{3}O^{+}]}$ Often, $[H_{3}O^{+}] = \sqrt{K_{a}C_{HA}}$
Before Equivalence Point (Buffer Region)	$K_a = \frac{[\mathrm{H_3O}^+] C_{\mathrm{A}^-}}{C_{\mathrm{HA}}}$ $[\mathrm{H_3O}^+] = K_a \times \left(\frac{\mathrm{mmol} \ \mathrm{HA}}{\mathrm{mmol} \ \mathrm{A}^-}\right)$
Half Titration Point	$[A^{-}] = [HA]$ $[H_{3}O^{+}] = K_{a}$ $pH = pK_{a}$

Summary of Calculations for Weak Acid Titrations Equivalence Point and Beyond

Region	Calculation of [OH ⁻]
Equivalence Point	$K_b^{A^-} = \frac{K_w}{K_a^{HA}}$
	$[OH^-] = \sqrt{K_b^{A^-}C_{A^-}}$
After Equivalence Point	$[OH^{-}] = \left(\frac{\text{mmol excess OH}^{-}}{\text{total volume}}\right)$

Summary of Calculations for Weak Base Titrations Before Equivalence Point

Region	Calculation of [OH ⁻]
Initial (no added titrant)	$K_b = \frac{[OH^-]^2}{[B]}$
	$= \frac{[OH^{-}]^{2}}{C_{B} - [OH^{-}]}$
	Often, $[OH^-] = \sqrt{K_b C_B}$
Before Equivalence Point (Buffer Region)	$K_b = \frac{[\mathrm{OH}^-] C_{\mathrm{BH}^+}}{C_{\mathrm{B}}}$
	$[OH^-] = K_b \times \left(\frac{\text{mmol B}}{\text{mmol BH}^+}\right)$
Holf Titration	[DII+] — [D]
Half Titration Point	$[BH^+] = [B]$
	$[OH^-] = K_b$
	$pOH = pK_b$

Summary of Calculations for Weak Base Titrations Equivalence Point and Beyond

Region	Calculation of [H ₃ O ⁺]
Equivalence Point	$K_a^{\text{BH}^+} = \frac{K_{\text{w}}}{K_b^{\text{B}}}$ $[\text{H}_3\text{O}^+] = \sqrt{K_a^{\text{BH}^+}}C_{\text{BH}^+}$
After Equivalence Point	$[H_3O^+] = \left(\frac{\text{mmol excess } H_3O^+}{\text{total volume}}\right)$